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Abstract. The data presented here show that human drivers apply a discrete noisy control mechanism to
drive their vehicle. A car-following model built on these observations, together with some physical limita-
tions (crash-freeness, acceleration), lead to non-Gaussian probability distributions in the speed difference
and distance which are in good agreement with empirical data. All model parameters have a clear physical
meaning and can be measured. Despite its apparent complexity, this model is simple to understand and
might serve as a starting point to develop even quantitatively correct models.

PACS. 45.05.+x General theory of classical mechanics of discrete systems

1 Introduction

Modelling the process by which a driver controls her ve-
hicle has been done since 1950. So far, no commonly
agreed model has been emerged. Even worse, the advent
of the cellular automaton models (see [1] for a review) has
sparked a burst of new models trying to describe (at least)
the car following process of one car driving behind another
one.

Most driving models assume (for reviews see [2,3,9])
an instantaneous or even delayed reaction of the driver
to the surrounding situation, i.e. the driving law can be
formulated as a stochastic differential equation (SDE):

v̇ = A(g, v, V ) + D(g, v, V )ξ. (1)

Here, g is the headway to the vehicle in front (distance
from front bumper of the following vehicle to the rear
bumper of the lead vehicle), v is the speed of the following
car, V the speed of the leading car, ξ is a noise term which
is restricted in size (acceleration is limited, and so is the
noise), and A(·) and D(·) are two functions describing the
reaction of the human driver to the situation in front of
her vehicle.

Of course, for equation (1) certain discretizations exist;
most obvious in time, leading to so called iterated map
models of traffic, and discretizations in time and space,
leading to the cellular automaton models of traffic flow.
Both models can be formulated as:

v(t + h) = v(t) + h A(g, v, V ) +
√

hD(g, v, V )ξ. (2)

Usually, since the step-size h is constant, the terms
v(t) + h A(g, v, V ) and

√
h D(g, v, V ) are combined into
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Fig. 1. The amount of gas (in % ranging from 0 to 100) applied
by the driver during a normal drive on a rural road. In 95% of
all data-points in this time-series the amount of gas between
subsequent data-points did not change.

new functions, leading to a more compact formulation of
the models.

Obviously, approaches as in equations (1, 2) ignore two
important features of human driving and of human actions
in general. Firstly, humans usually plan ahead, and sec-
ondly, the type of control humans apply is not continuous,
but discrete in time: they act only at certain moments in
time. These specific moments have been named action-
points [4,5], a name that will be used in the following.

While the second assumption can be proven by
analysing data from car-following experiments, see Fig-
ure 1, the first assumption has to be classified as a con-
jecture. Strictly speaking, there is no way of actually ob-
serving this planning process. The best that can be done
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Fig. 2. Acceleration time-series of the leading (1st) and two
following vehicles (2nd and 3rd). Usually, changes in acceler-
ation occur time delayed, while around time t = 1970 this
behaviour changes: the 2nd vehicle brakes before the 1st one,
while the 3rd one brakes in synchrony with the 1st car.

is to find examples in data for such a planning. One in-
teresting place where this can be observed is a courtesy
lane change at freeway entrances; another one is the ad-
vance braking in front of a red traffic light. In Figure 2,
an example for the latter behaviour is presented. Here, the
acceleration times series of three vehicles are shown, with
the following vehicles reacting before or in synchrony with
the lead car. Of course, both types of behaviours contra-
dict the assumption of an instantaneous driving law, i.e.
equations (1, 2).

The planning ahead may be described by a trajectory
computed in advance in the phase space (x(t), v(t), a(t))
of the following vehicle (x(t) being a position along the
road, in general this planning process involves the lateral
dynamics as well), i.e. including a planned velocity and ac-
celeration time course. First steps to formulate and anal-
yse such models have been put forward in [10,11], here a
more specific example will be added.

Note, that action point models are not completely dif-
ferent mathematically from the discretized version equa-
tion (2). This can be seen by considering the simplest ver-
sion of it. Since acceleration is assumed to be constant
between subsequent action points, the update equations
for an action point (see Sect. 3 below) can be cast in the
following form:

vn+1 = vn + an hn (3a)

xn+1 = xn +
hn

2
(vn + vn+1) (3b)

where xn, vn, an are the position, speed and acceleration,
respectively, at the time of action-point n. Note, that hn

can be a stochastic variable, as will be exemplified be-
low. This similarity may be a possible explanation why
map models have been used very successfully in traffic
flow modelling.

2 The data used

Mainly two types of data have been used to support the re-
sults in this article. The first are several data-sets from dif-
ferent instrumented vehicles, where speed, distance to the
leading vehicles, acceleration, in some cases the amount
of gas, viewing angle, steering angle and many more data
have been recorded with a high temporal resolution. The
vehicles were driven under normal to heavy traffic condi-
tions, and on test tracks. Different subjects drove the car;
they were fully informed about the experiments.

The second data-set is from the NGSIM project [14]
and consists of several thousand trajectories of vehicles
driving along two California freeways. The data have been
recorded by video cameras, therefore only the positions of
the cars (recorded in 0.1 s resolution) are the primary
data, anything else like speeds had been computed from
the trajectories.

The data consist of vehicle trajectories. One may won-
der about how generic such a trajectory is, and here the
assumption is made, that any trajectory is the reaction of
a particular driver to a particular environment, and that
this reaction can be parameterized if a suitable model of
the car driving process has been found. Nevertheless, the
approach taken here focuses on more robust features, that
is, on probability distributions of various observables in-
stead of the observable themselves.

The most prominent distributions to study are the
ones for the acceleration p(a), the speed differences be-
tween two vehicles p(∆v), the headway distribution p(T ),
where T = g/v is the scaled distance between the vehi-
cles, and the compound distribution p(∆v, T ), which is a
sensitive measure of the interaction between two vehicles.

3 A simple model

It has been argued above that the control process ap-
plied by humans is discrete and noisy. The discreteness has
been demonstrated in Figure 1. The randomness can be
seen in Figure 3, where the distribution p(∆t) of time in-
tervals ∆t between subsequent action-points is displayed.
This distribution follows an exponential distribution quite
close, which can be understood as a simple process: in
any instant of time the driver decides randomly whether
he should change acceleration or not. Of course, there
might be more sensible reasons to change acceleration,
but mainly the action-points happen more or less without
reasons, i.e. randomly.

Additionally, the randomness is not only in time, the
acceleration itself is not a very well defined function of
distance and speed-difference. This can be seen from sam-
pling acceleration values from a small phase-space interval
(g ± δg/2, v ± δv/2, V ± δV/2). Three resulting distribu-
tions pg,v,V (a)δg δv δV are displayed in Figure 4. Typi-
cally, those distributions have standard deviations around
0.4 m/s2, which will be interpreted in the following as the
acceleration noise.

The results obtained so far therefore motivate the fol-
lowing model. At the time tn of the nth action-point the
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Fig. 3. The distribution of the time intervals between sub-
sequent action points. The exponential function is a fit to the
data, with τ = 0.29(5) s. The time intervals with ∆t ≥ 2 s stem
from episodes where the car has been stopped, for instance by
a red light.
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Fig. 4. The distribution of accelerations for negative speed dif-
ference (approaching the lead vehicle), zero speed difference,
and positive speed difference. Data are from ten cars on a
Japanese test track [6], with relatively small speeds. All dis-
tributions are sampled from a small phase space box of size
1 m × 1 m/s × 1 m/s and are centered on the values denoted
in the legend.

driver chooses a new acceleration value an according to:

an = aopt − εξ. (4)

Here, aopt is an optimal acceleration value to be specified
below, ε is the size of the acceleration noise and ξ is a
random number in the interval [0, 1].

After that, the driver keeps acceleration constant
(more precisely: the amount of gas, acceleration might still
change due to changing air resistance or efficiency changes
in the engine), so the dynamics until the next action-point

occurs follows simple kinematic laws:

v(t) = vn + an (t − tn)

x(t) = xn + vn (t − tn) +
1
2
an (t − tn)2 t ∈ [tn, tn+1].

Here, xn, vn are the values of the variables x and v at the
time of the n-th action-point. By ignoring the trajectory
between the action-points, the update equation (3) defined
already in the Introduction results.

As demonstrated already, the time intervals ∆t =
tn+1 − tn between the action-points are exponentially dis-
tributed, which can be translated into a time-discrete set-
up as a certain probability pAP that an action-point will
occur in a given time-step. The action-points itself are se-
lected depending either on a random number drawn in any
time-step with ξ < pAP, or if the optimal acceleration is
smaller than the current acceleration a minus ε.

The optimal acceleration aopt can be computed by
modeling the planning process of the driver. To drive
safely during the short-term planning horizon τ , it should
be possible to safely stop the vehicle behind the leading
vehicle later on. That means, that a driver chooses the
optimal (maximum) acceleration aopt which fulfils the fol-
lowing condition:

d(v + aopt τ) + v τ +
1
2
aopt τ2 ≤ d(V ) + g. (5)

Here, d(·) are the braking distances, by assuming a con-
stant (comfortable) deceleration b which is the same for
both drivers, d(v) = v2/(2 b) can be used to solve equa-
tion (5) for aopt:

aopt = −v

τ
− b

2
+

√(
v

τ
− b

2

)2

+
2 b g + V 2 − v2

τ2
. (6)

This expression must be limited to a maximal acceleration:
for a realistic model, aopt ≤ amax(1 − v/vmax) has to be
enforced.

Taken anything together, this model has just seven
parameters: the physical limitations car-length �, maxi-
mum speed vmax, and maximum acceleration amax, and
the behavioural parameters preferred deceleration b, ac-
celeration noise ε, the action point probability pAP, and
the minimum preferred headway distance τ . In principle,
the maximal possible deceleration is another physical pa-
rameter, fortunately the decelerations of the model never
reach unphysical deceleration values.

This concludes the definition of the model. Note, that
despite the rather complicated look of equation (6), its ge-
ometric appearance is almost linear. Therefore it is very
likely, that humans are capable of learning at least a cer-
tain approximation to this function, no reason to do fairly
complicated math while driving.

4 Running the simulations

To compare the model with the data, simulations with
N = 100 vehicles have been run, either in a loop or by
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Fig. 5. The distribution of the time headways p(T ); compari-
son between simulation and data. The parameters chosen are:
pAP = 0.2, εa = 0.4 m/s2, vmax = 30 m/s, amax = 2 m/s2,
b = 0.8 m/s2, τ = 0.1 . . . 0.5 s, and � = 5.5 m.

following a lead vehicle driving with constant speed. The
time-step size has been set to h = 0.2 s. Simulations with
a smaller time-step size yield the same results, which is to
be expected since the dynamical equations are the exact
solution of the model. To use more than one vehicle fol-
lowing a lead vehicle is important, since the behaviour at
the end of a platoon differs from the behaviour directly
behind the lead car.

The following figures show the results of the simula-
tion compared to the real data. First, the headway dis-
tributions p(T ) are compared in Figure 5. In this case, as
indicated by the semi-logarithmic plot, the distributions
(simulation and data) follow quite closely a gamma distri-
bution (p(T ) ∝ T γ exp(−T/m)). This is in agreement with
the standard assumption [7,8]. Note however, that under
some circumstances this distribution may change into a
different form which can be obtained by the transforma-
tion T → 1/T . This will be detailed elsewhere. Secondly,
the distribution of the speed differences is shown in Fig-
ure 6. Again, good agreement between simulation and re-
ality could be seen.

The following simple consideration aids in understand-
ing p(∆v). Since the action-point dynamics makes it very
hard for the driver to arrive at a fixed point of the car fol-
lowing dynamics a = 0, ∆v = 0, g = g�, the acceleration
may be modelled by a simple SDE. By ignoring the rela-
tively weak dynamical component in the g-direction and
concentrating on the strong dynamics in ∆v-direction a
1D equation can be assumed:

∆̇v = a tanh(α∆v) + ηξ. (7)

The force on the right hand side is symmetric with respect
to ∆v = 0, which seems a good approximation even for
large ∆v, see again Figure 6. The somewhat surprising
tanh(·)-nonlinearity stem from the idea, that the driver
mainly apply two acceleration values: positive ones for
positive ∆v, and negative ones for negative ∆v. Obvi-
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Fig. 6. The distribution of the speed differences p(∆v). The
simulation parameters are as in Figure 5.

ously, this is a gross oversimplification, which can only
be justified by the result below.

The Fokker-Planck equation for the stationary phase
space density w(∆v) to this Langevin equation can be
solved exactly:

w(∆v) ∝ 1
η

cosh (α∆v))−2 a/(α η)
. (8)

For ∆v � 0, this gives the Laplace distribution w(∆v) ∝
exp(−2 a |∆v|/η) observable in Figure 6, therefore some
understanding of the origin of the p(∆v)-distribution is
gained.

5 Macroscopic features

Let us finally turn to the macroscopic behaviour of the
model. To have some guideline what to expect, the fun-
damental diagram can be computed by by solving equa-
tion (6) for a = 0, v = V (ignoring the noise ε) which
gives:

v =
g

τ
. (9)

Application of the micro-macro translation g = ∆x − � =
1/ρ−1/ρjam (for homogeneous states), where ρ is the den-
sity and ρjam is the maximum density, yields v(ρ), and by
means of the relation for the traffic flow q(ρ) = ρv(ρ):

q(ρ) =

⎧⎨
⎩

vmaxρ if ρ < ρc,
1
τ

(
1 − ρ

ρjam

)
else. (10)

The constant ρc is given by ρc = 1/(vmaxτ +1/ρjam). The
similation results give the right form, but with a differ-
ent prefactor τ , see Figure 7. This is because the actually
choosen average time headway determines the fundamen-
tal diagram, and this is a complicated function of the other
model parameters, namely ε, b, and pAP. Note the appar-
ent bistability of the model near ρc, which is sometimes
called capacity drop.
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Fig. 7. The fundamental diagram of the model introduced
here. Parameters are as in Figure 5. The average interval is
60 s. The slope of the theoretical fundamental diagram has
been adapted manually to the data.

There is another interesting feature with this model.
In the form defined so far, it does not display stable jams.
To add this feature, it is sufficient to hinder vehicles from
starting directly after the lead vehicle has started acceler-
ating. By forcing a standing vehicle to stand still until the
safe acceleration is larger than some critical value, such a
slow-to-start mechanism is easily implemented. However,
this somewhat ad hoc approach needs further support by
analyzing empirical data.

6 Summary and conclusions

The model presented here has some limitations. For in-
stance, it is not completely platoon stable, i.e. in a long
platoon disturbances can amplify and finally lead to stand-
ing vehicles. Some details of the acceleration distribution
(not shown) are not in full agreement to the data, and
the restriction to two car interactions must be lifted, the
NGSIM data for instance are from a six-lane freeway. An-
other limitation is that the model described here only
models the operational driving process covering the next
two seconds or so, while nothing is done to model tacti-
cal driving covering the next 10 s. This could be done by
extending the model to incorporate lane changing. The
interesting thing with tactical driving is that it influences
the acceleration: if the driver slows down to make room
for another vehicle to enter his lane, this is against the
logic of car following defined so far. Therefore, the tacti-
cal driving level is not just another limitation to vehicle
driving, but an important pre-requisite. First steps toward
this direction have been done already in [15].

Despite these limitations, it is capable to model human
driving faithfully. It is important to recognize that the in-
teraction between vehicles, together with the action-point
dynamics, lead to the exponential distribution of the speed
differences. Albeit this particular form of the distribution

signals that ∆v = 0 is a special value, the action-points
hinder the formation of a stable fixed point of the car fol-
lowing process. Many models described in the literature
assume such a fixed point; however most of them can be
made more realistic by adding the action-point mechanism
as described above.

More facts have been learned about the interaction
between cars: first of all, the interaction is controlled to a
large part by ∆v, the distances seem to be rather unim-
portant to the driver as long as they are in a certain com-
fortable range. This is similar to the models in [12,13], but
in contradiction to the so called optimal velocity models
which model the interaction as a function of distance only.
Interestingly, when a vehicle is in following mode the de-
celerations applied are rather small, typically the drivers
control their vehicle not by applying the brakes but sim-
ply by stepping off the gas. This makes the distribution
of p(∆v) so amazingly symmetric; when switching to a
larger b in the model above, the (simulated) distribution
becomes asymmetric.

Let us finally speculate about why humans drive in
this manner: because it is simply much more comfortable
to mince around a preferred distance than to actually fix
it completely.

Many thanks to T. Nakatsuji and his Hokkaido group for shar-
ing their data. The NGSIM project provided the beautiful tra-
jectory data-sets, which for sure will help to advance traffic
flow research. Data of the equipped car have been provided
by Jürgen Rataj, other data came from the group of Michael
Schreckenberg, which are acknowledged here as well.
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